
FreeRTOS

Alberto Bosio

Université de Montpellier

bosio@lirmm.fr

February 27, 2017

Alberto Bosio (UM) FreeRTOS February 27, 2017 1 / 52

Outlook

1 Introduction

2 Task Management

3 Scheduler

4 Queue Management

5 Semaphores

Alberto Bosio (UM) FreeRTOS February 27, 2017 2 / 52

Definitions

FreeRTOS is suited to deploy embedded real-time applications that
use microcontrollers or small microprocessors. This type of application
normally includes a mix of both hard and soft real-time requirements;

Soft real-time requirements are those that state a time deadline, but
breaching the deadline would not render the system useless;

Hard real-time requirements are those that state a time deadline,
and breaching the deadline would result in absolute failure of the
system.

Alberto Bosio (UM) FreeRTOS February 27, 2017 3 / 52

Definitions

FreeRTOS is a real-time kernel (or real-time scheduler) on top of
which embedded applications can be built to meet their hard
real-time requirements;

It allows applications to be organized as a collection of independent
threads of execution;

The kernel decides which thread should be executing by examining
the priority assigned to each thread by the application designer;

In the simplest case, the application designer could assign higher
priorities to threads that implement hard real-time requirements, and
lower priorities to threads that implement soft real-time requirements.

Alberto Bosio (UM) FreeRTOS February 27, 2017 4 / 52

Task Functions

Tasks are implemented as C functions which must return void and
take a void pointer parameter:

Example (Task Prototype)

void ATaskFunction(void *pvParameters);

Alberto Bosio (UM) FreeRTOS February 27, 2017 5 / 52

Task Scheleton

void ATaskFunction(void *pvParameters)

{

/* Variables declaration. */

int32_t lVariableExample = 0;

/* A task will normally be

implemented as an infinite loop. */

for(;;) {

/* The code to implement

the task functionality will go here. */

}

vTaskDelete(NULL);

}

Alberto Bosio (UM) FreeRTOS February 27, 2017 6 / 52

Creating Tasks

Tasks are created using the FreeRTOS xTaskCreate() API function.

Prototype

BaseType_t xTaskCreate (

TaskFunction_t pvTaskCode ,

const char * const pcName ,

uint16_t usStackDepth ,

void *pvParameters ,

UBaseType_t uxPriority ,

TaskHandle_t *pxCreatedTask)

Alberto Bosio (UM) FreeRTOS February 27, 2017 7 / 52

Creating Tasks

pvTaskCode: The pvTaskCode parameter is simply a pointer to the
function that implements the task (in effect, just the name of the
function);

pcName: A descriptive name for the task. This is not used by
FreeRTOS in any way. It is included purely as a debugging aid;

usStackDepth: Each task has its own unique stack that is allocated
by the kernel to the task when the task is created. The usStackDepth
value tells the kernel how large to make the stack;

pvParameters: Task functions accept a parameter of type pointer to
void (void*);

Alberto Bosio (UM) FreeRTOS February 27, 2017 8 / 52

Creating Tasks

uxPriority: Defines the priority at which the task will execute.
Priorities can be assigned from 0, which is the lowest priority to the
highest priority;

pxCreatedTask: pxCreatedTask can be used to pass out a handle to
the task being created. This handle can then be used to reference the
task in API calls that, for example, change the task priority or delete
the task. If your application has no use for the task handle, then
pxCreatedTask can be set to NULL;

There are two possible return values: pdPASS or pdFAIL. Fail
indicates that the task has not been created because there is
insufficient heap memory available for FreeRTOS to allocate enough
RAM to hold the task data structures and stack

Alberto Bosio (UM) FreeRTOS February 27, 2017 9 / 52

Example

#include "FreeRTOS.h"

int main(void)

{

xTaskCreate(task1 , "task1",

configMINIMAL_STACK_SIZE , NULL , 1, NULL);

xTaskCreate(task2 , "task2",

configMINIMAL_STACK_SIZE , NULL , 1, NULL);

/* Start the scheduler so

the tasks start executing. */

vTaskStartScheduler ();

for (;;);

}

Alberto Bosio (UM) FreeRTOS February 27, 2017 10 / 52

Top Level Task States

An application can consist of many tasks;

Alberto Bosio (UM) FreeRTOS February 27, 2017 11 / 52

Creating a Delay

Prototype

void vTaskDelay(TickType_t xTicksToDelay);

Alberto Bosio (UM) FreeRTOS February 27, 2017 12 / 52

Creating a Delay

xTicksToDelay: The number of tick interrupts that the calling task
will remain in the Blocked state before being transitioned back into
the Ready state. For example, if a task called vTaskDelay(100)
when the tick count was 10,000, then it would immediately enter the
Blocked state, and remain in the Blocked state until the tick count
reached 10,100;

The macro pdMS TO TICKS() can be used to convert a time
specified in milliseconds into a time specified in ticks. For example,
calling vTaskDelay(pdMS TO TICKS(100)) will result in the
calling task remaining in the Blocked state for 100 milliseconds.

Alberto Bosio (UM) FreeRTOS February 27, 2017 13 / 52

Creating a Period Task

vTaskDelay() parameter specifies the number of tick interrupts that
should occur between a task calling vTaskDelay(), and the same task
once again transitioning out of the Blocked state. The length of time
the task remains in the blocked state is specified by the vTaskDelay()
parameter, but the time at which the task leaves the blocked state is
relative to the time at which vTaskDelay() was called.

Alberto Bosio (UM) FreeRTOS February 27, 2017 14 / 52

Creating a Period Task

Prototype

void vTaskDelayUnti (

TickType_t * pxPreviousWakeTime ,

TickType_t xTimeIncrement

);

Alberto Bosio (UM) FreeRTOS February 27, 2017 15 / 52

Creating a Period Task

xPreviousWakeTime: This parameter is named on the assumption
that vTaskDelayUntil() is being used to implement a task that
executes periodically and with a fixed frequency. In this case,
pxPreviousWakeTime holds the time at which the task last left the
Blocked state (was woken up). This time is used as a reference point
to calculate the time at which the task should next leave the Blocked
state.

xTimeIncrement: This parameter is also named on the assumption
that vTaskDelayUntil() is being used to implement a task that
executes periodically and with a fixed frequency (the frequency being
set by the xTimeIncrement value). xTimeIncrement is specified in
ticks. The macro pdMS TO TICKS() can be used to convert a time
specified in milliseconds into a time specified in ticks.

Alberto Bosio (UM) FreeRTOS February 27, 2017 16 / 52

Tasks State Review

The task that is actually running (using processing time) is in the
Running state.

Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.

Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state

Tasks can wait in the Blocked state for an event and are
automatically moved back to the Ready state when the event occur

Alberto Bosio (UM) FreeRTOS February 27, 2017 17 / 52

Scheduler

The task that is actually running (using processing time) is in the
Running state.

Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.

Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state

Tasks can wait in the Blocked state for an event and are
automatically moved back to the Ready state when the event occur

Alberto Bosio (UM) FreeRTOS February 27, 2017 18 / 52

Configuring the Scheduling Algorithm

The scheduling algorithm is the software routine that decides which
Ready state task to transition into the Running state.

The algorithm can be configured by specifying:

configUSE PREEMPTION
configUSE TIME SLICING

The options have to be configured into FreeRTOSConfig.h

Alberto Bosio (UM) FreeRTOS February 27, 2017 19 / 52

Configuring the Scheduling Algorithm

In all possible configurations the FreeRTOS scheduler will use a
Round Robin algorithm.

A Round Robin scheduling algorithm does not guarantee time is
shared equally between tasks of equal priority, only that Ready state
tasks of equal priority will enter the Running state in turn.

Alberto Bosio (UM) FreeRTOS February 27, 2017 20 / 52

Prioritized Pre-emptive Scheduling with Time Slicing

The configuration:

configUSE PREEMPTION set to 1
configUSE TIME SLICING set to 1

sets the FreeRTOS scheduler to use a scheduling algorithm called
‘Fixed Priority Pre-emptive Scheduling with Time Slicing’, which is
the scheduling algorithm used by most small RTOS applications.

Alberto Bosio (UM) FreeRTOS February 27, 2017 21 / 52

Prioritized Pre-emptive Scheduling with Time Slicing

Where:

Fixed Priority: Scheduling algorithms described as ‘Fixed Priority’ do
not change the priority assigned to the tasks being scheduled, but also
do not prevent the tasks themselves from changing their own priority,
or that of other tasks;
Pre-emptive: Pre emptive scheduling algorithms will immediately ‘pre
empt’ the Running state task if a task that has a priority higher than
the Running state task enters the Ready state. Being pre-empted
means being involuntarily (without explicitly yielding or blocking)
moved out of the Running state and into the Ready state to allow a
different task to enter the Running state;
Time Slicing: Time slicing is used to share processing time between
tasks of equal priority, even when the tasks do not explicitly yield or
enter the Blocked state. Scheduling algorithms described as using
‘Time Slicing’ will select a new task to enter the Running state at the
end of each time slice if there are other Ready state tasks that have the
same priority as the Running task. A time slice is equal to the time
between two RTOS tick interrupts.

Alberto Bosio (UM) FreeRTOS February 27, 2017 22 / 52

Prioritized Pre-emptive Scheduling with Time Slicing

Example:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS.org/contact to provide feedback, corrections, and check for updates.

92

Table 15. An explanation of the terms used to describe the scheduling policy

Term Definition

Fixed Priority Scheduling algorithms described as ‘Fixed Priority’ do not change the priority

assigned to the tasks being scheduled, but also do not prevent the tasks

themselves from changing their own priority, or that of other tasks.

Pre-emptive Pre-emptive scheduling algorithms will immediately ‘pre-empt’ the Running

state task if a task that has a priority higher than the Running state task

enters the Ready state. Being pre-empted means being involuntarily (without

explicitly yielding or blocking) moved out of the Running state and into the

Ready state to allow a different task to enter the Running state.

Time Slicing Time slicing is used to share processing time between tasks of equal priority,

even when the tasks do not explicitly yield or enter the Blocked state.

Scheduling algorithms described as using ‘Time Slicing’ will select a new task

to enter the Running state at the end of each time slice if there are other

Ready state tasks that have the same priority as the Running task. A time

slice is equal to the time between two RTOS tick interrupts.

Figure 26 and Figure 27 demonstrate how tasks are scheduled when a fixed priority

preemptive scheduling with time slicing algorithm is used. Figure 26 shows the sequence in

which tasks are selected to enter the Running state when all the tasks in an application have a

unique priority. Figure 27 shows the sequence in which tasks are selected to enter the

Running state when two tasks in an application share a priority.

Task2 (med, periodic)

Task3 (low, event)

Task1 (high, event)

Idle task (continuous)
t1 t3t2 t4 t5t6 t7 t8

t10
t11

t12
t13t9

Task 3 pre-empts the idle task.

Task 2 pre-empts Task 3

Task 2 pre-empts
the Idle task

Task 1 pre-empts Task 2

Event processing is
delayed until higher
priority tasks block

Figure 26. Execution pattern highlighting task prioritization and pre-emption in a

hypothetical application in which each task has been assigned a unique
priority

Alberto Bosio (UM) FreeRTOS February 27, 2017 23 / 52

Prioritized Pre-emptive Scheduling (without Time Slicing)

The configuration:

configUSE PREEMPTION set to 1
configUSE TIME SLICING set to 0

If time slicing is not used, then the scheduler will only select a new
task to enter the Running state when either:

A higher priority task enters the Ready state;
The task in the Running state enters the Blocked or Suspended state;

Alberto Bosio (UM) FreeRTOS February 27, 2017 24 / 52

Prioritized Pre-emptive Scheduling (without Time Slicing)

Example:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS.org/contact to provide feedback, corrections, and check for updates.

96

Table 16. The FreeRTOSConfig.h settings that configure the kernel to use

Prioritized Pre-emptive Scheduling without Time Slicing

Constant Value

configUSE_PREEMPTION 1

configUSE_TIME_SLICING 0

As was demonstrated in Figure 27, if time slicing is used, and there is more than one ready

state task at the highest priority that is able to run, then the scheduler will select a new task to

enter the Running state during each RTOS tick interrupt (a tick interrupt marking the end of a

time slice). If time slicing is not used, then the scheduler will only select a new task to enter

the Running state when either:

x A higher priority task enters the Ready state.

x The task in the Running state enters the Blocked or Suspended state.

There are fewer task context switches when time slicing is not used than when time slicing is

used. Therefore, turning time slicing off results in a reduction in the scheduler’s processing

overhead. However, turning time slicing off can also result in tasks of equal priority receiving

greatly different amounts of processing time, a scenario demonstrated by Figure 29. For this

reason, running the scheduler without time slicing is considered an advanced technique that

should only be used by experienced users.

Task2 (Idle priority, continuous)

Task1 (high, event)

Idle task (continuous)
t1 t2 t3 t4 t5 t8 t11 t12 t13

t6 t7

Task 1 leaves the Blocked state
and pre-empts the Idle task

Task 1 re-enters the
Blocked state

t9 t10

Task 1 leaves the Blocked
state and pre-empts Task 2

Task 1 re-enters the
Blocked state

Figure 29 Execution pattern that demonstrates how tasks of equal priority can
receive hugely different amounts of processing time when time slicing is not

used

Referring to Figure 29, which assumes configIDLE_SHOULD_YIELD is set to 0:

Alberto Bosio (UM) FreeRTOS February 27, 2017 25 / 52

Co-operative Scheduling

The configuration:

configUSE PREEMPTION set to 0
configUSE TIME SLICING set to any value

When the co-operative scheduler is used, a context switch will only
occur when the Running state task enters the Blocked state, or the
Running state task explicitly yields (manually requests a re-schedule)
by calling taskYIELD(). Tasks are never pre-empted, so time slicing
cannot be used.

Alberto Bosio (UM) FreeRTOS February 27, 2017 26 / 52

Co-operative Scheduling

Example:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS.org/contact to provide feedback, corrections, and check for updates.

98

Table 17. The FreeRTOSConfig.h settings that configure the kernel to use co-
operative scheduling

Constant Value

configUSE_PREEMPTION 0

configUSE_TIME_SLICING Any value

When the co-operative scheduler is used, a context switch will only occur when the Running

state task enters the Blocked state, or the Running state task explicitly yields (manually

requests a re-schedule) by calling taskYIELD(). Tasks are never pre-empted, so time slicing

cannot be used.

Figure 30 demonstrates the behavior of the co-operative scheduler. The horizontal dashed

lines in Figure 30 show when a task is in the Ready state.

Task2 (medium priority)

Task1 (high priority)

Task3 (low priority)

t1 t2 t3 t4 t5 t6

Task 2 unblocks when
Task 3 writes to a queue

Task 1 unblocks when an
interrupt writes to a semaphore

Task 3 calls taskYIELD(), allowing
Task 1 to enter the Running state

Task 1 enters the Blocked state, allowing
Task 2 to enter the Running state

Figure 30 Execution pattern demonstrating the behavior of the co-operative
scheduler

Referring to Figure 30:

1. Task 1

Task 1 has the highest priority. It starts in the Blocked state, waiting for a semaphore.

At time t3 an interrupt gives the semaphore, causing Task 1 to leave the Blocked state

and enter the Ready state (giving semaphores from interrupts is covered in Chapter 6).

At time t3 Task 1 is the highest priority Ready state task, and if the pre-emptive

scheduler had been used Task 1 would become the Running state task. However, as

Alberto Bosio (UM) FreeRTOS February 27, 2017 27 / 52

Characteristics of a Queue

A queue can hold a finite number of fixed size data items. The
maximum number of items a queue can hold is called its ‘length’.
Both the length and the size of each data item are set when the
queue is created;

Queues are normally used as First In First Out (FIFO) buffers, where
data is written to the end (tail) of the queue and removed from the
front (head) of the queue.

Alberto Bosio (UM) FreeRTOS February 27, 2017 28 / 52

Example

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS.org/contact to provide feedback, corrections, and check for updates.

104

Queue
Task A

int x;

Task B

int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5
integers. When the queue is created it does not contain any values so is empty.

Queue
10

Task A

int x;

x = 10;

Task B

int y;

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.

Queue
20 10

Task A

int x;

x = 20;

Task B

int y;

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the

queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

Queue
20 10

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Send

Send

Receive

Queue
20

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next if it read from the queue again. The queue now has four

empty spaces remaining.

Figure 31. An example sequence of writes to, and reads from a queue

Alberto Bosio (UM) FreeRTOS February 27, 2017 29 / 52

Example (cont)

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS.org/contact to provide feedback, corrections, and check for updates.

104

Queue
Task A

int x;

Task B

int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5
integers. When the queue is created it does not contain any values so is empty.

Queue
10

Task A

int x;

x = 10;

Task B

int y;

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.

Queue
20 10

Task A

int x;

x = 20;

Task B

int y;

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the

queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

Queue
20 10

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Send

Send

Receive

Queue
20

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next if it read from the queue again. The queue now has four

empty spaces remaining.

Figure 31. An example sequence of writes to, and reads from a queue

Alberto Bosio (UM) FreeRTOS February 27, 2017 30 / 52

Access by Multiple Tasks

Queues are objects in their own right that can be accessed by any
task that knows of their existence. Any number of tasks can write to
the same queue, and any number of tasks can read from the same
queue. In practice it is very common for a queue to have multiple
writers, but much less common for a queue to have multiple readers.;

Alberto Bosio (UM) FreeRTOS February 27, 2017 31 / 52

Blocking on Queue Reads

When a task attempts to read from a queue, it can optionally specify
a ‘block’ time. This is the time the task will be kept in the Blocked
state to wait for data to be available from the queue, should the
queue already be empty.

A task that is in the Blocked state, waiting for data to become
available from a queue, is automatically moved to the Ready state
when another task or interrupt places data into the queue.

The task will also be moved automatically from the Blocked state to
the Ready state if the specified block time expires before data
becomes available.

Alberto Bosio (UM) FreeRTOS February 27, 2017 32 / 52

Blocking on Queue Writes

Just as when reading from a queue, a task can optionally specify a
block time when writing to a queue.

In this case, the block time is the maximum time the task should be
held in the Blocked state to wait for space to become available on the
queue, should the queue already be full.

Alberto Bosio (UM) FreeRTOS February 27, 2017 33 / 52

Using a Queue

Create

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength,

UBaseType_t uxItemSize);

Alberto Bosio (UM) FreeRTOS February 27, 2017 34 / 52

Using a Queue

uxQueueLength: The maximum number of items that the queue
being created can hold at any one time;

uxItemSize: The size in bytes of each data item that can be stored
in the queue

Return Value: A non-NULL value being returned indicates that the
queue has been created successfully. The returned value should be
stored as the handle to the created queue.

Alberto Bosio (UM) FreeRTOS February 27, 2017 35 / 52

Write

Prototypes

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,

const void * pvItemToQueue,

TickType_t xTicksToWait);

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,

const void * pvItemToQueue,

TickType_t xTicksToWait);

Alberto Bosio (UM) FreeRTOS February 27, 2017 36 / 52

Write

xQueue: The handle of the queue to which the data is being sent
(written). The queue handle will have been returned from the call to
xQueueCreate() used to create the queue;

pvItemToQueue: A pointer to the data to be copied into the queue;

xTicksToWait: The maximum amount of time the task should
remain in the Blocked state to wait for space to become available on
the queue, should the queue already be full;

Return Value:

pdPASS will be returned only if data was successfully sent to the queue.
errQUEUE FULL will be returned if data could not be written to the
queue because the queue was already full.

Alberto Bosio (UM) FreeRTOS February 27, 2017 37 / 52

Read

Prototype

BaseType_t xQueueReceive(QueueHandle_t xQueue,

void * const pvBuffer,

TickType_t xTicksToWait);

Alberto Bosio (UM) FreeRTOS February 27, 2017 38 / 52

Read

xQueue: The handle of the queue to which the data is being sent
(written). The queue handle will have been returned from the call to
xQueueCreate() used to create the queue;

pvBuffer: A pointer to the memory into which the received data will
be copied;

xTicksToWait: The maximum amount of time the task should
remain in the Blocked state to wait for data to become available on
the queue, should the queue already be empty;

If xTicksToWait is zero, then xQueueReceive() will return immediately
if the queue is already empty.

Return Value:

pdPASS will be returned only if data was successfully read from the
queue.
errQUEUE EMPTY will be returned if data cannot be read from the
queue because the queue is already empty.

Alberto Bosio (UM) FreeRTOS February 27, 2017 39 / 52

Example

static void vSenderTask(void *pvParameters) {

int32_t lValueToSend;

BaseType_t xStatus;

lValueToSend = (int32_t) pvParameters;

for(;;) {

xStatus = xQueueSendToBack(

xQueue , &lValueToSend , 0);

if(xStatus != pdPASS) {

vPrintString("Error");

}

}

}
Alberto Bosio (UM) FreeRTOS February 27, 2017 40 / 52

Example

static void vReceiverTask(void *pvParameters) {

int32_t lReceivedValue;

BaseType_t xStatus;

const TickType_t xTicksToWait =

pdMS_TO_TICKS(100);

for(;;) {

xStatus = xQueueReceive(

xQueue , &lReceivedValue , xTicksToWait);

if(xStatus == pdPASS)

vPrintStringAndNumber("Received = ", lReceivedValue);

else

vPrintString("erro");

}

}

Alberto Bosio (UM) FreeRTOS February 27, 2017 41 / 52

Example

QueueHandle_t xQueue;

int main(void)

{

xQueue = xQueueCreate(5, sizeof(int32_t));

if(xQueue != NULL)

{

xTaskCreate(vSenderTask , "Sender1",

1000, (void *) 100, 1, NULL);

xTaskCreate(vSenderTask , "Sender2",

1000, (void *) 200, 1, NULL);

xTaskCreate(vReceiverTask , "Receiver",

1000, NULL , 1, NULL);

vTaskStartScheduler ();

}

for(;;);

}

Alberto Bosio (UM) FreeRTOS February 27, 2017 42 / 52

Binary Semaphore (Mutex)

The binary semaphore can be considered conceptually as a queue with
a length of one.

The queue can contain a maximum of one item at any time, so is
always either empty or full (hence, binary).

Alberto Bosio (UM) FreeRTOS February 27, 2017 43 / 52

Init

Prototype

SemaphoreHandle_t xSemaphoreCreateBinary(void);

Alberto Bosio (UM) FreeRTOS February 27, 2017 44 / 52

Init

Return Value:

If NULL is returned, then the semaphore cannot be created because
there is insufficient heap memory available for FreeRTOS to allocate
the semaphore data structures.
A non-NULL value being returned indicates that the semaphore has
been created successfully. The returned value should be stored as the
handle to the created semaphore.

Alberto Bosio (UM) FreeRTOS February 27, 2017 45 / 52

Sem P

Prototype

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,

TickType_t xTicksToWait);

Alberto Bosio (UM) FreeRTOS February 27, 2017 46 / 52

Sem P

xSemaphore: The semaphore being ‘taken’.

xTicksToWait: The maximum amount of time the task should
remain in the Blocked state to wait for the semaphore if it is not
already available. Setting xTicksToWait to portMAX DELAY will
cause the task to wait indefinitely (without a timeout) if
INCLUDE vTaskSuspend is set to 1 in FreeRTOSConfig.h.

Return Value:

pdPASS is returned only if the call to xSemaphoreTake() was
successful in obtaining the semaphore.
The semaphore is not available. It will return pdFAIL.

Alberto Bosio (UM) FreeRTOS February 27, 2017 47 / 52

Sem V

Prototype

BaseType_t xSemaphoreGive (

SemaphoreHandle_t xSemaphore);

Alberto Bosio (UM) FreeRTOS February 27, 2017 48 / 52

Init

xSemaphore: The semaphore being ‘given’.

Return Value:

pdPASS will be returned only if the call to xSemaphoreGiveFromISR()
is successful.
If a semaphore is already available, it cannot be given, and
xSemaphoreGiveFromISR() will return pdFAIL.

Alberto Bosio (UM) FreeRTOS February 27, 2017 49 / 52

Counting Semaphores

Counting semaphores can be thought of as queues that have a length
of more than one.

Tasks are not interested in the data that is stored in the queue, just
the number of items in the queue.

configUSE COUNTING SEMAPHORES must be set to 1 in
FreeRTOSConfig.h for counting semaphores to be available.

Alberto Bosio (UM) FreeRTOS February 27, 2017 50 / 52

Init

Prototype

SemaphoreHandle_t xSemaphoreCreateCounting(

UBaseType_t uxMaxCount,

UBaseType_t uxInitialCount);

Alberto Bosio (UM) FreeRTOS February 27, 2017 51 / 52

Init

uxMaxCount: The maximum value to which the semaphore will
count. To continue the queue analogy, the uxMaxCount value is
effectively the length of the queue.

uxInitialCount: The initial count value of the semaphore after it has
been created.

Return Value:

If NULL is returned, then the semaphore cannot be created because
there is insufficient heap memory available for FreeRTOS to allocate
the semaphore data structures.
A non-NULL value being returned indicates that the semaphore has
been created successfully. The returned value should be stored as the
handle to the created semaphore.

Alberto Bosio (UM) FreeRTOS February 27, 2017 52 / 52

	Introduction
	Task Management
	Scheduler
	Queue Management
	Semaphores

